reprint
Augmentation and defect filling in oral surgery
Henriette Lerner
Augmentation and defect filling in oral surgery
A multicentre non-interventional study

Author: Henriette Lerner, Germany

Introduction

There is considerable demand for bone replacement and augmentation materials in the field of dental medicine, especially in oral and maxillofacial surgery. A wide variety of biological and synthetic replacement materials is now available. In recent years, synthetic substances containing calcium and phosphate have been developed. These require minimal effort, present no practical problems and can be used efficiently and economically. They are usually accepted by the body without problems; their tissue tolerability is excellent and they are neither locally nor systemically toxic. Unlike materials of biological origin, they do not pose any risk of infection or sensitisation. In all cases it is of course necessary to take into account the individual hard tissue situation at the site at which bone regeneration material is to be used. A product that is easy to apply is especially useful for filling smaller defects; CERASORB® Paste, which has been available for some time, is such a product.

The aim was to perform a non-interventional study to evaluate its use by as many independent users as possible; handling and usefulness were to be studied in different oral surgical indications under everyday conditions in different dental practices.

Material and methodology

An account is given of experience with the use of the β-tricalcium phosphate preparation CERASORB® Paste within a multicentre study. It was intended that dental practices throughout Germany, independent from one another, participate. Goal and methods were defined in an observation plan to ensure that the procedure was consistent. All results were entered on prepared recording sheets. Because of the non-interventional nature of this study, no particular therapeutic or application plan was imposed; users were instead referred to the instructions given in the information for use.

Patients aged between 18 and 70 years with the following pre-operative diagnoses or indications were to be enrolled in the study:

- alveolar defect
- apicoectomy
- preparation of implant bed
- post exstirpational cyst filling
- internal sinus lift
- periodontal pocket
- further indications equivalent to those already mentioned

Patients were not to be included in the study if they were unsuitable for bone regeneration procedures because of general medical exclusion criteria or local inflammation in the surgical area, or if they regularly took medication that could influence wound healing (such as cortisone preparations and immunosuppressants).
The subject of the study was CERASORB® Paste (curasan AG, Kleinostheim, Germany), a three-phase bone regeneration material in paste form containing powdered β-TCP in a matrix of hyaluronic acid and methyl cellulose; it is based on CERASORB®, a well-known product that has been in use for many years. During the process of manufacturing β-TCP, CERASORB® ceramic particles with an average size of 63 μm are created by sintering and grinding. These are mixed with an aqueous polymer solution in the ratio (by weight) 70% ceramics and 30% polymer solution. When using this product, as in all augmentation procedures, it is important to ensure that all soft tissue is completely removed so that it is possible for the paste to make direct contact with bone; in the process heavy bleeding should be stopped to make it possible for the material to adhere well to the bone.

After history-taking and an initial examination (documented with X-ray images if possible) with explanation of the procedure and consent to the operation, records were made of the treatment and follow-up examinations that had been performed; follow-up examinations were carried out one to two weeks postoperatively, after three, six and twelve months and later if necessary depending on the healing and bone-regeneration process. The dentist carrying out the treatment was responsible for deciding when and how frequently follow-up examinations occurred. When explaining the procedure to the patient it is not necessary to mention the possible complications of bone harvesting, or problems relating to rejection reactions and potential risk of allergic sensitisation and infection, as is the case with biological materials.

Parameters for judging successful bone healing with CERASORB® Paste ("effectiveness parameters"):
- bone structure as seen in follow-up X-rays
- current clinical status (such as state of mucous membranes, suture dehiscence)
- bone situation at implantation
- global evaluation of effectiveness/therapeutic success by the dentist carrying out treatment
- cases in which treatment was terminated or changed because of lack of effectiveness

After the study had been completed, the recording sheets were examined centrally to check completeness and subjected to quality control. After double
Results

Altogether twelve dental practices and dental surgery practices from all over Germany took part. The observation period (from the first treatment day of the first patient to the last treatment day of the last patient) extended from August 2013 to June 2015. It was possible to evaluate recording sheets on 41 patients (19 female, 22 male) aged 22 to 74 years (mean age: 55.2 years, median age: 57 years). Patients with certification of appropriate pre-operative diagnoses or indications were included in the study. In the process it became apparent that CERASORB® Paste was used with very different diagnoses in daily routine work:

- A total of 23 concomitant illnesses in 16 patients were reported. The most frequent were hypertension in six patients, allergic reactions in four patients and tinnitus, rheumatism and Tension Neck Syndrome in two patients each. Four participants were smokers. Six patients were taking nine different medications altogether, the most frequent being 100 mg aspirin in three cases. Augmentation or defect filling was carried out at a total of 77 sites in the 41 patients (Table 2).

CERASORB® Paste was most often used in 1 ml volumes (n=31 patients [76%]) (range: 0.5 – 3.0 ml). In none of the cases was autologous cancellous bone mixed in. Twenty membranes were used in 18 cases (19 resorbable, one non-resorbable). Complete primary wound closure was achieved in 36 cases.

Antibiotics were applied in 24 cases (58%), only pre-operatively in five patients and only postoperatively in 19 patients. The most frequently-used antibiotics were clindamycin (in 20 patients) and amoxicillin (n = 2). They were taken for a duration of five to ten days, the mean and most frequent duration being ten days. The surgical operations and postoperative periods were free from complications.

At the clinical follow-up examination performed one to two weeks after the operation, an evaluation was made of the state of the membranes, the extent of inflammation and patient compliance. The soft-tissue healing was classified as very good or good in 93% of cases (see Table 3). The membrane situation was also classed as very good in 36% of cases and as good in 51%. These results were certainly also due to good patient compliance.

26 patients (= 63%) indicated that they rinsed regularly; this was done by far the most frequently (in 18 cases) with chlorhexidine. It was suggested to the dentists carrying out the treatment that clinical evaluations of the progress and success of new bone formation (by comparison with the initial state on the day of the operation) should be made after about three, six, nine and twelve months. Analysis of the results revealed undisturbed healing and a continual decrease in the amount of synthetic bone regeneration material with time. After twelve months, bone regeneration material was still visible in five patients.

Tab. 2: Treated sites/frequencies: (n = 77 in 41 patients)

<table>
<thead>
<tr>
<th>1st quadrant</th>
<th>2nd quadrant</th>
<th>3rd quadrant</th>
<th>4th quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 – 2</td>
<td>21 – 5</td>
<td>31 – 0</td>
<td>41 – 1</td>
</tr>
<tr>
<td>12 – 4</td>
<td>22 – 2</td>
<td>32 – 0</td>
<td>42 – 0</td>
</tr>
<tr>
<td>13 – 1</td>
<td>23 – 3</td>
<td>33 – 0</td>
<td>43 – 0</td>
</tr>
<tr>
<td>14 – 6</td>
<td>24 – 7</td>
<td>34 – 1</td>
<td>44 – 2</td>
</tr>
<tr>
<td>15 – 3</td>
<td>25 – 4</td>
<td>35 – 2</td>
<td>45 – 1</td>
</tr>
<tr>
<td>16 – 4</td>
<td>26 – 5</td>
<td>36 – 5</td>
<td>46 – 5</td>
</tr>
<tr>
<td>17 – 4</td>
<td>27 – 4</td>
<td>37 – 3</td>
<td>47 – 1</td>
</tr>
<tr>
<td>18 – 2</td>
<td>28 – 0</td>
<td>38 – 0</td>
<td>48 – 0</td>
</tr>
<tr>
<td>Σ = 26 (33.77 %)</td>
<td>Σ = 30 (38.96 %)</td>
<td>Σ = 11 (14.28 %)</td>
<td>Σ = 10 (12.99 %)</td>
</tr>
</tbody>
</table>

Tab. 3: Follow-up examination after one to two weeks

<table>
<thead>
<tr>
<th>Evaluation of soft-tissue healing [n=41 patients]:</th>
<th>Very good (1)</th>
<th>Good (2)</th>
<th>Satisfactory (3)</th>
<th>No answer</th>
<th>Mean(1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>24 (59 %)</td>
<td>14 (34 %)</td>
<td>3 (7 %)</td>
<td></td>
<td>1.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation of membrane [n=18 patients]:</th>
<th>Very good (1)</th>
<th>Good (2)</th>
<th>Satisfactory (3)</th>
<th>No answer</th>
<th>Mean(1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>6 (33.3 %)</td>
<td>11 (61.1 %)</td>
<td>0</td>
<td>1 (5.6 %)</td>
<td>1.64</td>
</tr>
</tbody>
</table>
(12.2 %). Abnormalities were reported in four pa-
tients: in two cases, seromas were found at the three-
month examination. At the follow-up operation
which was necessary, neither augmentation material
nor newly-formed bone was found. Augmentation
was therefore repeated. After six months, one patient
did not have the necessary primary stability for the
planned implant. After nine months, another patient
showed radiolucency following placement of two im-
plants at #35 and #37. It was found that, in the vast
majority of cases, the treatment was complete after a
little more than six months; the defects in the
above-mentioned patients also healed somewhat
later without problems.

The dentist carrying out the treatment then gave a
final summarising assessment of the success of the
treatment and the tolerability of the materials used.
This assessment was made at the last observation
point/last appointment of the patient at the dental
practice in each case. If the “very good” and “good”
judgements are added together, the results for effec-
tiveness are almost 80 % and for tolerability are over
90 % (see Table 4, final evaluation of the defect filling/
augmentation).

Handling and healing were also judged to be very
good or good in most cases. The rate of complications
can be considered low and not abnormal; it decreased
continually with time.

Discussion

In the first years after the introduction of β-TCP
CERASORB®, many users still tended to mix this bio-
ceramic product with autologous bone before using it.
This became progressively less common because of
all the positive experience gained from using the
product on its own. As long ago as 2000, Szucs and
colleagues reported that, in 52 patients with different
dental or surgical indications, the implanted β-TCP
had been completely transformed into bone within
twelve months and that bone tissue stable enough to
hold implants had formed within four to six months.1
They came to the conclusion that it is not necessary
to use autologous bone for a sinus lift or the filling of
cysts because CERASORB® alone has shown itself to
be a suitable material for these applications. These re-
sults are supported by many publications including
Hoch, Palti, Foitzik et al., Basa et al., Horch et al., Szabo
et al. and Schermer.2-10

While the use of β-TCP to fill bone defects is now
accepted, the need to use membranes in association
with augmentation procedures is still controversial. In
smaller procedures, where the mucous membranes
are in good condition and the wound has been closed
without tension, it may not be necessary to use a
membrane. Appropriate membranes should be used
if wound dehiscence occurs, or is to be expected, and
whenever additional protection seems helpful for un-
disturbed bone regeneration. Both resorbable (e. g.
Osgide®) and non-resorbable membranes (e. g. PTFE
membrane) are available depending on the indication
and the aim of treatment. When choosing a mem-
brane it is crucial that the indication and the technol-
ogy are suitable for each other. Although the use of
synthetic materials based on β-TCP can now be con-
sidered established, the “granular” form of the prod-
uct was repeatedly criticised; this led to the develop-
ment of products that were easier to handle and more
user-friendly. CERASORB® Paste – the subject of this
study – was developed to fill smaller defects. The main
properties of this product can be summarised as fol-
lows. It is based on CERASORB® M Granules with their
interconnecting pore system, which have been opti-
mised in over 15 years of clinical use and serve as a
mechanical framework for the formation of new
bone. Parallely to the formation of new bone, the
granular material is completely absorbed. Because of
its entirely synthetic manufacture there is no risk of
the immune reactions and infections that can occur
with donor material of human or animal origin.

The paste can be completely and accurately applied
directly from the sterile prefilled syringe to fill small
bone defects. The syringe also makes it possible to use
the material effectively in sites that are hard to reach.
After complete filling of the defect the paste main-
tains optimal contact with the surrounding healthy
bone. The hydrogel does harden during and after ap-
lication. This means that the paste keeps its long-
term plasticity when in the defect and its volume re-
mains stable; it can fill the defect completely so that
it is flush with the edge. After application the paste
takes up growth factors by diffusion from the bony
bed. In this process, the hyaluronic acid gel presents
the incoming cells with a matrix through which the
fine CERASORB® Granules can be made accessible.
The result is early vascularisation and rapid formation
of new bone.

The hyaluronic acid contained by the paste is a
natural component of the extracellular matrix in hu-
mans. Because of the water-rich, plastic hydrogel
structure of CERASORB® Paste, the growth factors,
proteins and minerals that are needed for bone for-
formation can be rapidly taken up without a diffusion
barrier. The end-products of the metabolic process of
bone formation are absorbed into the hydrogel or
passed on to the surrounding blood-vessels and bro-
ken down by the body. According to the results of re-
cent research, hyaluronic acid also stimulates the dif-
ferentiation of stem cells into osteoblasts and has an
anti-inflammatory effect.11
In two animal experiments (with rabbits) CERASORB® Paste was examined in detail in the distal femur and proximal tibia respectively. In both studies complete reconstruction of the bone structure was achieved in six months. There was no evidence of inflammation, allergy or a foreign body reaction, which indicates that the paste was well tolerated biologically.11,12 In another study (with sheep) CERASORB® Paste was used in a scapula defect. It was found that bone regeneration had occurred in the defects after six months and that the original bone structure with cortical bone and cancellous bone had been completely restored after twelve months. In all these studies both the \(\beta \)-TCP particles and the carrier substances were completely absorbed in parallel with the formation of new bone.13

If residues of CERASORB® particles are still visible on the X-rays, this is not automatically a sign of poor stability in the augmentation area or an absence of bone regeneration. It should always be remembered that an X-ray is a two-dimensional image of a three-dimensional space. Histologically it has been shown in many cases that the absorption of the granules and the rebuilding of autochthonous bone were much more advanced than was thought to be visible on the X-ray.

The main goal of this non-interventional study was to find out how the new product is applied and how it performs in standard dental procedures carried out by different users who are independent of each other. CERASORB® Paste proved to be an ideal synthetic bone regeneration material for the filling and augmentation of small dental bone defects; this material is absorbed while the body forms new bone of its own, as has already been reported by other authors.14 In 13 patients who took part in this non-interventional study, a total of 37 implants were placed, most frequently at \#24, \#26 and \#14. 36 out of 37 implants were primarily stable. The bone quality at the time of implantation was judged to be optimal in twelve of 22 cases, as good in six cases, as adequate in one case and as inadequate in three cases.

Summary

CERASORB® Paste is a new type of bone regeneration material in paste form based on fine \(\beta \)-TCP granules and hyaluronic acid matrix. In the present open multicentre study under everyday conditions this material showed itself to be suitable for filling smaller jaw defects, in particular because it is also easy to handle. It is noteworthy that no side effects of any kind and no intolerance reactions were observed.

Editorial note: This article was first published in DENT IMPLANTOL 21, 2, 84—89 (2017).

<table>
<thead>
<tr>
<th>Preoperative diagnosis</th>
<th>Bone augmentation / regeneration (n = 41)</th>
<th>Tolerance (n = 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>21 (51.2%)</td>
<td>24 (34.2%)</td>
</tr>
<tr>
<td>Good</td>
<td>11 (26.8%)</td>
<td>14 (58.5%)</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>3 (7.3%)</td>
<td>0</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>4 (9.8%)</td>
<td>1 (2.4%)</td>
</tr>
<tr>
<td>No answer</td>
<td>2 (4.9%)</td>
<td>2 (4.9%)</td>
</tr>
</tbody>
</table>
CERASORB® M Granules
Resorbable, pure-phase β-tricalcium phosphate

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Flip-off caps</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000 100 505</td>
<td>150 – 500 µm</td>
<td></td>
<td>0.5 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 200 505</td>
<td>500 – 1000 µm</td>
<td></td>
<td>0.5 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 201 001</td>
<td>500 – 1000 µm</td>
<td></td>
<td>1.0 cc</td>
<td>1</td>
</tr>
<tr>
<td>9000 201 005</td>
<td>500 – 1000 µm</td>
<td></td>
<td>1.0 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 202 005</td>
<td>500 – 1000 µm</td>
<td></td>
<td>2.0 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 300 505</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>0.5 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 301 001</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>1.0 cc</td>
<td>1</td>
</tr>
<tr>
<td>9000 301 005</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>1.0 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 302 005</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>2.0 cc</td>
<td>5</td>
</tr>
</tbody>
</table>

CERASORB® Classic Granules
Resorbable, pure-phase β-tricalcium phosphate

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Flip-off caps</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9002 200 505</td>
<td>500 – 1000 µm</td>
<td></td>
<td>0.5 g</td>
<td>5</td>
</tr>
<tr>
<td>9002 300 505</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>0.5 g</td>
<td>5</td>
</tr>
<tr>
<td>9004 202 005</td>
<td>500 – 1000 µm</td>
<td></td>
<td>2.0 g</td>
<td>5</td>
</tr>
<tr>
<td>9004 302 005</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>2.0 g</td>
<td>5</td>
</tr>
</tbody>
</table>

CERASORB® Plus Granules
Resorbable, pure-phase β-tricalcium phosphate

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Flip-off caps</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000 010 505</td>
<td>500 – 1000 µm</td>
<td></td>
<td>0.5 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 010 105</td>
<td>500 – 1000 µm</td>
<td></td>
<td>1.0 cc</td>
<td>5</td>
</tr>
<tr>
<td>9000 010 201</td>
<td>500 – 1000 µm</td>
<td></td>
<td>2.0 cc</td>
<td>1</td>
</tr>
<tr>
<td>9000 020 205</td>
<td>1000 – 2000 µm</td>
<td></td>
<td>2.0 cc</td>
<td>5</td>
</tr>
</tbody>
</table>

CERASORB® Perio Granules
Resorbable, pure-phase β-tricalcium phosphate

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Flip-off caps</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9001 000 015</td>
<td>250 – 500 µm</td>
<td></td>
<td>0.5 g</td>
<td>5</td>
</tr>
</tbody>
</table>

CERASORB® Paste
Resorbable β-tricalcium phosphate paste + hyaluronic acid matrix

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9001 304 041</td>
<td>≈ 2 g / cm³</td>
<td>0.5 cc</td>
<td>1</td>
</tr>
<tr>
<td>9001 304 051</td>
<td>≈ 2 g / cm³</td>
<td>1.0 cc</td>
<td>1</td>
</tr>
</tbody>
</table>

CERASORB® Mouldable Foam
Resorbable, pure-phase β-tricalcium phosphate + porcine collagen matrix

<table>
<thead>
<tr>
<th>REF. No.</th>
<th>Size</th>
<th>Content</th>
<th>Packsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000 060 054</td>
<td>12 x 12 x 4 mm</td>
<td>0.5 cc</td>
<td>3</td>
</tr>
<tr>
<td>9000 060 124</td>
<td>25 x 12 x 4 mm</td>
<td>1.2 cc</td>
<td>1</td>
</tr>
<tr>
<td>9000 060 254</td>
<td>25 x 25 x 4 mm</td>
<td>2.5 cc</td>
<td>1</td>
</tr>
<tr>
<td>9000 060 504</td>
<td>25 x 50 x 4 mm</td>
<td>5.0 cc</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend
Flip-off caps
- silver
- green hatched
- blue hatched
- green
- blue
- violet

About curasan

curasan develops, manufactures and markets biomaterials and medical devices in the field of bone and tissue regeneration, wound healing and osteoarthritis therapy. As a pioneer and global technology leader in the growing field of regenerative medicine, curasan is specialized primarily on biomimetic bone grafting materials for dental, oral/maxillofacial, orthopedic and spinal applications, i.e. materials mimicking biological structures.

Numerous patents and a broad record of scientific publications demonstrate the clinical success of curasan’s highly innovative products. Dental and orthopaedic clinicians worldwide benefit from the broad range of the premium quality and easy to use portfolio offered by the technology leader curasan.

curasan maintains its own high-tech facilities for research, development and manufacturing of biomaterials in Frankfurt/Main, Germany. In addition to its headquarters, the company has a subsidiary, curasan, Inc., in the Research Triangle Park area, near Raleigh, N.C., USA.

curasan´s innovative products are cleared by the US Food and Drug Administration (FDA) and many other international authorities and available in almost 50 countries worldwide. curasan AG is a public company listed in the General Standard at the Frankfurt Stock Exchange.

Source: curasan AG
CERASORB®-Promise
CERASORB®. Keeps its words in bone regeneration.

CERASORB® M
- big and microporeous surface increases osteoconductivity
- shortened duration of resorption by fast penetration with body own bone supporting structure

CERASORB® Paste
- for immediate implantation in the filling and reconstruction of minor and multi-walled bone defects

CERASORB® Foam
- easy handling thanks to defect-adapted modelling and comfortable positioning

CERASORB® – Always First Choice.